deep learning step by step with python a very gentle introduction to deep neural networks for practical data science

Download Book Deep Learning Step By Step With Python A Very Gentle Introduction To Deep Neural Networks For Practical Data Science in PDF format. You can Read Online Deep Learning Step By Step With Python A Very Gentle Introduction To Deep Neural Networks For Practical Data Science here in PDF, EPUB, Mobi or Docx formats.

Deep Learning Made Easy With R

Author : N. D. Lewis
ISBN : 1519514212
Genre :
File Size : 70. 83 MB
Format : PDF, ePub, Docs
Download : 525
Read : 721

Download Now


Master Deep Learning with this fun, practical, hands on guide. With the explosion of big data deep learning is now on the radar. Large companies such as Google, Microsoft, and Facebook have taken notice, and are actively growing in-house deep learning teams. Other large corporations are quickly building out their own teams. If you want to join the ranks of today's top data scientists take advantage of this valuable book. It will help you get started. It reveals how deep learning models work, and takes you under the hood with an easy to follow process showing you how to build them faster than you imagined possible using the powerful, free R predictive analytics package. Bestselling decision scientist Dr. N.D Lewis shows you the shortcut up the steep steps to the very top. It's easier than you think. Through a simple to follow process you will learn how to build the most successful deep learning models used for learning from data. Once you have mastered the process, it will be easy for you to translate your knowledge into your own powerful applications. If you want to accelerate your progress, discover the best in deep learning and act on what you have learned, this book is the place to get started. YOU'LL LEARN HOW TO: Understand Deep Neural Networks Use Autoencoders Unleash the power of Stacked Autoencoders Leverage the Restricted Boltzmann Machine Develop Recurrent Neural Networks Master Deep Belief Networks Everything you need to get started is contained within this book. It is your detailed, practical, tactical hands on guide - the ultimate cheat sheet for deep learning mastery. A book for everyone interested in machine learning, predictive analytic techniques, neural networks and decision science. Start building smarter models today using R! Buy the book today. Your next big breakthrough using deep learning is only a page away!

Python Machine Learning

Author : Sebastian Raschka
ISBN : 9781783555147
Genre : Computers
File Size : 79. 43 MB
Format : PDF, Mobi
Download : 617
Read : 1170

Download Now


Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics About This Book Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Keras and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approach Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.

Deep Learning For Business With Python

Author : N. Lewis
ISBN : 1539681556
Genre :
File Size : 58. 77 MB
Format : PDF, ePub, Docs
Download : 266
Read : 349

Download Now


Leverage Deep Learning for Business Analysis - with Python! Deep Learning for Business With Python takes you on a gentle, fun and unhurried journey to building your own deep neural network models for business use in Python. It demystifies deep learning by taking a how-to approach through a series of business case studies. Using plain language, it offers a simple, intuitive, practical, non-mathematical, easy to follow guide to the most successful ideas, outstanding techniques and usable solutions available using Python. QUICK AND EASY: Deep Learning for Business With Python offers the ideal introduction to deep learning for business analysis. It is designed to be accessible. It will teach you, in simple and easy-to-understand terms, how to take advantage of deep learning to enhance business outcomes using Python. NO EXPERIENCE?: I'm assuming you never did like linear algebra, don't want to see things derived, dislike complicated computer code, and you're here because you want to see how to use deep neural networks for business problems explained in plain language, and try them out for yourself. THIS BOOK IS FOR YOU IF YOU WANT: Explanations rather than mathematical derivation Real world applications that make sense. Illustrations to deepen your understanding. Worked examples you can easily follow and immediately implement. Ideas you can actually use and try on your own data. TAKE THE SHORTCUT: Through a simple to follow process you will learn how to build deep neural network models for business problems using Python. Once you have mastered the process, it will be easy for you to translate your knowledge into your own powerful business applications. Each chapter covers, step by step, a different aspect of deep neural networks. You get your hands dirty as you work through some challenging real world business issues. YOU'LL LEARN HOW TO: Unleash the power of Deep Neural Networks for classifying Insurance Claims. Develop hands on solutions to predict product yield. Design successful applications for modeling customer churn. Master techniques for efficient classification in peer to peer marketplaces. Deploy deep neural networks to predict crash injury severity. Adopt winning solutions to forecast property value. Everything you need to get started is contained within this book. Deep Learning for Business with Python is your very own hands on practical, tactical, easy to follow guide to mastery. Buy this book today, your next big breakthrough using deep neural networks is only a page away!

Getting Started With Tensorflow

Author : Giancarlo Zaccone
ISBN : 9781786469069
Genre : Computers
File Size : 27. 13 MB
Format : PDF, ePub, Docs
Download : 809
Read : 268

Download Now


Get up and running with the latest numerical computing library by Google and dive deeper into your data! About This Book Get the first book on the market that shows you the key aspects TensorFlow, how it works, and how to use it for the second generation of machine learning Want to perform faster and more accurate computations in the field of data science? This book will acquaint you with an all-new refreshing library—TensorFlow! Dive into the next generation of numerical computing and get the most out of your data with this quick guide Who This Book Is For This book is dedicated to all the machine learning and deep learning enthusiasts, data scientists, researchers, and even students who want to perform more accurate, fast machine learning operations with TensorFlow. Those with basic knowledge of programming (Python and C/C++) and math concepts who want to be introduced to the topics of machine learning will find this book useful. What You Will Learn Install and adopt TensorFlow in your Python environment to solve mathematical problems Get to know the basic machine and deep learning concepts Train and test neural networks to fit your data model Make predictions using regression algorithms Analyze your data with a clustering procedure Develop algorithms for clustering and data classification Use GPU computing to analyze big data In Detail Google's TensorFlow engine, after much fanfare, has evolved in to a robust, user-friendly, and customizable, application-grade software library of machine learning (ML) code for numerical computation and neural networks. This book takes you through the practical software implementation of various machine learning techniques with TensorFlow. In the first few chapters, you'll gain familiarity with the framework and perform the mathematical operations required for data analysis. As you progress further, you'll learn to implement various machine learning techniques such as classification, clustering, neural networks, and deep learning through practical examples. By the end of this book, you'll have gained hands-on experience of using TensorFlow and building classification, image recognition systems, language processing, and information retrieving systems for your application. Style and approach Get quickly up and running with TensorFlow using this fast-paced guide. You will get to know everything that can be done with TensorFlow and we'll show you how to implement it in your environment. The examples in the book are from the core of the computation industry—something you can connect to and will find familiar.

Deep Learning

Author : Ian Goodfellow
ISBN : 9780262035613
Genre : Computers
File Size : 74. 24 MB
Format : PDF, ePub, Docs
Download : 493
Read : 994

Download Now


An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives.

Machine Learning

Author : Peter Flach
ISBN : 9781107096394
Genre : Computers
File Size : 65. 92 MB
Format : PDF, ePub
Download : 949
Read : 302

Download Now


Covering all the main approaches in state-of-the-art machine learning research, this will set a new standard as an introductory textbook.

Learning Deep Architectures For Ai

Author : Yoshua Bengio
ISBN : 9781601982940
Genre : Computers
File Size : 86. 48 MB
Format : PDF
Download : 738
Read : 1002

Download Now


Theoretical results suggest that in order to learn the kind of complicated functions that can represent high-level abstractions (e.g. in vision, language, and other AI-level tasks), one may need deep architectures. Deep architectures are composed of multiple levels of non-linear operations, such as in neural nets with many hidden layers or in complicated propositional formulae re-using many sub-formulae. Searching the parameter space of deep architectures is a difficult task, but learning algorithms such as those for Deep Belief Networks have recently been proposed to tackle this problem with notable success, beating the state-of-the-art in certain areas. This paper discusses the motivations and principles regarding learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models such as Deep Belief Networks.

Make Your Own Neural Network

Author : Tariq Rashid
ISBN : 1530826608
Genre :
File Size : 37. 41 MB
Format : PDF
Download : 577
Read : 917

Download Now


A step-by-step gentle journey through the mathematics of neural networks, and making your own using the Python computer language. Neural networks are a key element of deep learning and artificial intelligence, which today is capable of some truly impressive feats. Yet too few really understand how neural networks actually work. This guide will take you on a fun and unhurried journey, starting from very simple ideas, and gradually building up an understanding of how neural networks work. You won't need any mathematics beyond secondary school, and an accessible introduction to calculus is also included. The ambition of this guide is to make neural networks as accessible as possible to as many readers as possible - there are enough texts for advanced readers already! You'll learn to code in Python and make your own neural network, teaching it to recognise human handwritten numbers, and performing as well as professionally developed networks. Part 1 is about ideas. We introduce the mathematical ideas underlying the neural networks, gently with lots of illustrations and examples. Part 2 is practical. We introduce the popular and easy to learn Python programming language, and gradually builds up a neural network which can learn to recognise human handwritten numbers, easily getting it to perform as well as networks made by professionals. Part 3 extends these ideas further. We push the performance of our neural network to an industry leading 98% using only simple ideas and code, test the network on your own handwriting, take a privileged peek inside the mysterious mind of a neural network, and even get it all working on a Raspberry Pi. All the code in this has been tested to work on a Raspberry Pi Zero.

Understanding Machine Learning

Author : Shai Shalev-Shwartz
ISBN : 9781107057135
Genre : Computers
File Size : 85. 7 MB
Format : PDF, ePub, Mobi
Download : 394
Read : 761

Download Now


Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.

Neural Networks In Finance

Author : Paul D. McNelis
ISBN : 9780080479651
Genre : Computers
File Size : 35. 46 MB
Format : PDF, Kindle
Download : 787
Read : 871

Download Now


This book explores the intuitive appeal of neural networks and the genetic algorithm in finance. It demonstrates how neural networks used in combination with evolutionary computation outperform classical econometric methods for accuracy in forecasting, classification and dimensionality reduction. McNelis utilizes a variety of examples, from forecasting automobile production and corporate bond spread, to inflation and deflation processes in Hong Kong and Japan, to credit card default in Germany to bank failures in Texas, to cap-floor volatilities in New York and Hong Kong. * Offers a balanced, critical review of the neural network methods and genetic algorithms used in finance * Includes numerous examples and applications * Numerical illustrations use MATLAB code and the book is accompanied by a website

Top Download:

Best Books